
First-principles multiphase equation of state of carbon under extreme conditions

Alfredo A. Correa
Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA

and H Division, Physical Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA

Lorin X. Benedict, David A. Young, and Eric Schwegler
H Division, Physical Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA

Stanimir A. Bonev
Department of Physics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5

�Received 1 February 2008; revised manuscript received 19 May 2008; published 1 July 2008�

We describe the construction of a multiphase equation of state for carbon at extreme pressures based on ab
initio electronic structure calculations of two solid phases �diamond and BC8� and the liquid. Solid-phase free
energies are built from knowledge of the cold curves and phonon calculations, together with direct ab initio
molecular-dynamics calculations of the equation of state, which are used to extract anharmonic corrections to
the phonon free energy. The liquid free energy is constructed based on results from molecular-dynamics
calculations and constraints determined from previously calculated melting curves, assuming a simple solidlike
free-energy model. The resulting equation of state is extended to extreme densities and temperatures with a
Thomas Fermi-based free-energy model. Comparisons to available experimental results are discussed.
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I. INTRODUCTION

The equation of state �EOS� of carbon at high pressure is
of great interest for understanding the physics and chemistry
of monatomic substances in general and has become espe-
cially relevant in recent years as a number of dynamic high-
pressure experiments have been performed which explore
states of matter in these conditions.1–3 In addition, several
important applications have emerged where a detailed under-
standing of the properties of carbon under extreme condi-
tions is critical, such as in the design of fusion capsules for
the National Ignition Facility.4

The design of dynamic high-pressure experiments re-
quires the use of hydrodynamic simulations, in which mate-
rials are subjected to large pressure and temperature gradi-
ents, and the resulting response of the materials is computed
with the relevant fluid transport equations.5 The accuracy of
hydrodynamic simulations depends critically on the quality
of the EOS tables, as well as other constitutive relations they
use as input. In addition, for a very accurate accounting of
the flow of heat during dynamic compression, attention must
be paid to the latent heat resulting from phase transitions.

The properties of carbon under extreme pressure and tem-
perature conditions are also needed to devise the models of
outer planets �e.g., Neptune and Uranus�,6–9 white dwarf
atmospheres,10–12 and their interiors13,14 as well as extrasolar
carbon planets.15,16 In the context of planetary science, Ross6

and Hubbard7 suggested the possibility of finding elemental
carbon in its diamond form in the inner layers of Uranus and
Neptune, forming from the presence of methane. Benedetti et
al.8 reported experimental findings that methane can dissoci-
ate into diamond in the above mentioned planets. Contrary to
these findings, simulations by Ghiringhelli et al.9 indicate
that the rate of dissociation would be extremely slow in Ura-
nus and Neptune �but still possible in white dwarf stars�.

Resolving these issues requires a good understanding of the
phase diagram and the equation of state of the phases in-
volved.

This in turn means that a thermodynamically consistent
multiphase EOS, which takes into account all known phases
of the material and provides a consistent description of the
equilibrium phase diagram,17 is required. The only high-
pressure phases of carbon18 identified conclusively in experi-
ment to date are the diamond phase, and of course the liquid.
However, there is strong theoretical evidence for a higher-
pressure solid phase, BC8 �body-centered cubic with eight
atoms per cell�, stable above a pressure of roughly 1100
GPa.19 Such conditions are currently unattainable in static
high-pressure experiments, where the best in situ diagnostics
can be applied. First-principles simulations provide an alter-
nate way to investigate the detailed phase-dependent proper-
ties of the system at these extreme conditions. They do not
make use of empirical parameters and have been shown to
have predictive power at extreme pressures.20

There have been numerous attempts to construct multi-
phase EOS models for carbon, all of which have their merits.
The models of Kerley and Chhabildas,21 van Thiel and
Ree,22 and Molodets23 focus on the lower-pressure properties
�including the graphite phase� and treat the diamond melting
curve with a Lindemann-type law, which produces melting
temperatures that increase monotonically with pressure.
Bundy et al.24 constructed a phase diagram by extrapolating
a large number of lower-pressure experimental results to
high temperature, also producing a diamond melting line that
increases with pressure. The current understanding of the
diamond melting line is that it has a maximum as a function
of pressure,25–27 which has been confirmed experimentally.28

This behavior is accounted for in newer multiphase EOS
models,29,30 though only a limited amount of information on
the properties of the liquid were included. Furthermore, to
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the best of our knowledge, there are no multiphase EOS
models for carbon that include the high-pressure BC8 phase.
Several of the high-pressure carbon phase diagrams pro-
duced over recent years are displayed in Fig. 1.

In this work, we provide a multiphase EOS for elemental
carbon at high pressure, which includes the three phases:
diamond, BC8, and liquid. We focus specifically on an accu-
rate description of the EOS in the range of conditions rel-
evant in dynamic compression, such as in shock melting. The
EOS is expressed as analytic functions for the free energy of
the individual phases,29,30 determined by fitting directly to
the results of our ab initio calculations. Two types of infor-
mation have been obtained from our first-principles elec-
tronic structure calculations: �1� single-phase properties,
such as internal energies, pressures, and vibrational and elec-
tronic excitations, and �2� phase boundaries. The solid �dia-
mond, BC8�-to-liquid phase lines have been determined pre-
viously using first-principles two-phase simulations.27 The
free energies of the solid phases are then obtained using what
amounts to a Mie-Grüneisen model at high-T �above the De-
bye temperature�, with additional corrections accounting for
zero-point motion and anharmonic corrections. In the case of
the liquid, the situation is much more complex because of the
lack of a universal liquid EOS. Here we use �and validate� a
model previously suggested31,32 for monatomic systems. We
show how the knowledge of the melting line, together with
the solid-phase free energies, can be used to construct a suit-
able EOS for the liquid.

In Sec. II we outline the model used to describe the solids
�Sec. II A� and the liquid phase �Sec. II B�. We describe in
detail how the different parameters for the model are ob-
tained from the first-principles calculations. In Sec. III, we
discuss the resulting multiphase description. Finally, in Sec.
IV, we briefly address the problem of connecting our multi-
phase carbon EOS to a Thomas Fermi-based model capable
of describing behavior at extreme densities, both high and
low, and at high temperatures.

II. CONSTRUCTION OF SINGLE-PHASE FREE
ENERGIES

In what follows, we make the fundamental assumption
that the Helmholtz free energy �F=E−TS� for each phase
can be decomposed into three terms as

F�V,T� = F0�V� + Fi�V,T� + Fe�V,T� . �1�

Here F0 �the cold part�, represents the ground-state energy
for a system with fixed ionic positions, while the remaining
two terms account for elementary excitations. The ion-
thermal term, Fi, is the free energy due to lattice vibrations
or other ionic excitations, and the electron-thermal term, Fe,
is the free energy due to electronic excitations. Such a sepa-
ration requires us to invoke the Born-Oppenheimer approxi-
mation, and the assumption that the modification of the free
energy from electron-phonon coupling is small. Electron or-
bital occupancies are constrained to have a Fermi distribu-
tion at the equilibrium ionic temperature in the cases where
this is potentially relevant, i.e., for the metallic liquid and
semiconductor BC8 �but not for diamond as it has a large
electronic gap, even at high temperatures�.27 In this way, we
set the electron temperature equal to the ion temperature, so
we are describing carbon in thermal equilibrium. The elec-
tronic structure calculations are performed within density-
functional theory �DFT� using the generalized gradient ap-
proximation �GGA� of Perdew-Burke-Ernzerhof.33 We use
the pseudopotential approximation in the norm-conserving
Troullier-Martins scheme.34 Once the free energies of the
individual phases are known, the standard two-phase Max-
well construction is used to determine phase lines for the
system at constant pressure. This ensures that at a given set
of �P ,T� conditions, the favored phase is the one with the
lowest Gibbs free energy. We now describe the construction
of solid and liquid free energies in some detail.

A. Solid phases

Following Eq. �1�, the free energy of each solid phase
includes a cold piece given by DFT-GGA total-energy calcu-
lations of the crystalline system �diamond or BC8�, in which
the atoms are fixed in their equilibrium positions. This is
done in a fcc �bcc� unit cell with two �eight� atoms for dia-
mond �BC8�, describing the electronic Kohn-Sham orbitals
by a grid of 10�10�10 �3�3�3� k points and a plane-
wave energy cutoff of 70 Ry. The BC8 basis vectors35 are
fully relaxed at each cell volume. We calculate the total en-
ergy on a grid of volumes for the two solid phases. A Vinet
equation of state36 is then fit to the DFT results to obtain a
continuous function of volume �Fig. 2�,

F0�V� =
4V0B0

�B0� − 1�2 �1 − �1 + X�exp�− X�� + �0, �2�

where

X =
3

2
�B0� − 1���V/V0�1/3 − 1� . �3�

This analytic form fits the computed points very well over a
wide range of volumes37 and allows us to extract the four
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FIG. 1. �Color online� Several carbon phase diagrams proposed
in the last decade, some of which include the BC8 phase. The bold
line indicates phase boundaries used in this work for the construc-
tion of the liquid EOS.
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phase-dependent parameters: equilibrium volume V0, bulk
modulus B0, pressure derivative of the bulk modulus B0�, and
the minimum energy �0, which are reported in Table I. Note
that the BC8 phase has an equilibrium volume slightly less
than that of the diamond phase, and that the energies of the
two phases converge as volume decreases. Furthermore, they
cross at roughly a volume of �2.68 Å3 /atom, corresponding
to a pressure of 1075 GPa, after the effect of zero-point
motion of the two phases is taken into account �see below�.
This is in agreement with previous theoretical predictions of
the transition pressure at zero temperature using similar
methods.25 However, we note that our calculated V0 for the
diamond phase is 5.785 Å3 /atom, 3% larger than that of
experiment once zero-point motion and thermal expansion
have been accounted for. This is a well-known error resulting
from the use of GGA-DFT. Depending on the intended ap-
plication of the EOS, it may be necessary to shift V0 “by
hand” to bring it into exact agreement with experiment. For
example, in designing dynamic high-pressure experiments,
the final state achieved can be critically sensitive to the ini-
tial density. In what follows, we use our theoretical value for
the sake of consistency and continuity.

For obtaining the ion-thermal term, Fi, we assume that the
system is described well within the quasiharmonic approxi-
mation, together with small anharmonic corrections present
at high temperatures. In quasiharmonic theory, the finite-T
solid at a given density is modeled as a collection of nonin-
teracting phonons.38 The phonon spectrum depends on den-

sity so the phonon density of states, DV���, is calculated as a
function of V. We compute the full phonon dispersion and
resulting phonon density of states within our GGA-DFT ap-
proach by the linear-response method as implemented in the
ABINIT code.39 For each solid phase, DV is computed on a
grid of volumes �normalized to unity by convention�.

In principle, we can impose a Bose-Einstein distribution
for the phonon modes and calculate the T-dependent quasi-
harmonic free energy at each V by performing the appropri-
ate integral over DV���. However, we need the free energy at
a continuous set of volumes in order to compute the ion-
thermal contribution to the pressure, for instance. Addition-
ally, we aim to construct models in which the parameters
have a very clear physical meaning. Since the frequency-
dependent function DV��� changes in subtle ways as V
varies,27 it may seem difficult to embody the V dependence
in one or a few parameters. However, from the EOS point of
view, the Debye-type models40 provide an excellent approxi-
mation to the full quasiharmonic free energy. At high tem-
perature, the Debye model free energy is within �0.2% of
the full quasiharmonic result if the Debye temperature, �, is
chosen to be �0 as defined by

kB�0�V� = �e1/3 exp�� log���DV���d�� . �4�

In the same way, we define the �2 moment,

kB�2�V� =	5

3
� ����2DV���d� . �5�

The high-temperature expansion of the quasiharmonic free
energy can then be written as follows:40

Fh�V,T� = − 3kBT
log� e1/3T

�0�V�
� −

1

40
��2�V�

T
�2

+ ¯� .

�6�

In the opposite limit, as T→0, the harmonic free energy
tends to 9

8kB�1 �zero-point energy�, where �1 is defined by

kB�1�V� =
4

3
� ��DV���d� . �7�

The three definitions for � are equivalent for the ideal case of
the Debye model �in which DV�����2 for ���� and is
zero for �����.32

FIG. 2. �Color online� Vinet equation fits to the cold curves for
diamond and BC8.

TABLE I. Parameters for the carbon solid-phase equations of state. Volumes are in Å3 /atom, bulk moduli in GPa, energies in eV/atom,
Debye temperatures in Kelvin, linear-volume Grüneisen coefficients �	� in Å−3 and anharmonic coefficients �a� in Kelvin−1 /atom. The ��0�

are the values of � at reference volumes, Vref. Vref�diamond�=5.571 Å3 /atom, and Vref�BC8�=3.177 Å3 /atom. For each phase, ��V�
=��0�� V

Vref
�−
 exp�	�Vref−V��.

Cold curve Ion thermal

Harmonic Anharmonic

V0 B0 B0� �0 �A
�0� 
A 	A �B

�0� 
B 	B �0
�0� 
0 	0 a

Diamond 5.785 368.2 4.038 −155.059 1887.8 0.913 −0.316 1887.8 0.429 0.168 1887.8 0.202 0.131 3.8�10−5

BC8 5.077 539.7 3.821 −153.751 1961.9 0 0 3176.3 0.532 0.156 2727.27 0.131 0.192 5.5�10−5

FIRST-PRINCIPLES MULTIPHASE EQUATION OF STATE… PHYSICAL REVIEW B 78, 024101 �2008�

024101-3



For many systems, �0 and �1 can be considered equal,
which simplifies the description. For the diamond and BC8
phases of carbon, we find that �0 and �1 differ by more than
10% at high compressions. This is a result of the phonon
density of states �PDOS� being rather different from the clas-
sic Debye form. As discussed in Ref. 27, the transverse-
acoustic �TA� modes of diamond and BC8 are separated in
energy from the rest of the phonon modes at high pressures,
resulting in a double-peaked PDOS. In addition, these TA
modes have energies, which are roughly independent of vol-
ume, unlike the remaining modes which exhibit a strong in-
crease in energy upon compression. To represent this phys-
ics, we employ a “double-Debye” model, in which the PDOS
is approximated by two overlapping Debye peaks, each of
which is characterized by its own volume-dependent Debye
temperature. The model PDOS as a function of volume then
has the form

DV��� = �ADV
A��� + �BDV

B��� , �8�

where DV
A,B�����2 for ���kB�A,B �and zero otherwise� are

the individually normalized Debye model phonon densities
of states. The coefficients �A,B are determined by requiring
that the total PDOS is normalized,

1 = �A + �B. �9�

In addition to this constraint, we choose to require that the
three phonon moments, �0, �1, and �2, be equal to those
computed from the true PDOS at each volume,

log��0� = �A log��A� + �B log��B� , �10�

�1 = �A�A + �B�B, �11�

�2
2 = �A�A

2 + �B�B
2 . �12�

This gives us four nonlinear equations to determine the four
unknowns �parameters of the PDOS model�: �A, �B, �A, and
�B, which must be solved for each volume at which the
PDOS calculation was performed. In what follows, we stipu-
late that �A��B. Using the normalization and �0 constraints,
we can write

�A =
log��B/�0�
log��B/�A�

, �B =
log��0/�A�
log��B/�A�

. �13�

This implies that �A��0��B if �A,B are to be greater
than zero. The standard single-Debye model is recovered for
the degenerate case �A=�0=�B��. The remaining two con-
straint equations for �1 and �2 can then be solved numeri-
cally to obtain �A and �B as functions of ��0 ,�1 ,�2�. Figure 3
shows the PDOS of diamond at two representative volumes,
together with the double-Debye fits for optimal values of the
parameters. For the larger volume �close to ambient�, the
PDOS is well described by a single Debye model. The PDOS
at the smaller volume, corresponding to a pressure above
1000 GPa, clearly shows two distinct contributions, which
are described well with the double-Debye approach. Figure 4
shows the BC8 PDOS at two volumes, again with double-
Debye fits. Figure 5 displays �A�V� and �B�V� for diamond
and BC8. Note that for both phases, �A is roughly indepen-

dent of volume; we assume it to be completely independent
of V for BC8. This is consistent with the identification of the
“A” peak as representing the TA modes.27

In order to characterize the V dependence of Fh, we must
parametrize the V-dependence of the Debye temperatures.
We do this by assuming that their respective Grüneisen pa-
rameters �A,B,0�� vary linearly with volume,

−
d log��A,B,0��

d log�V�
� A,B,0��V� = 
A,B,0� + 	A,B,0�V .

�14�

This form for the Grüneisen parameter allows us to satisfy a
well-known infinite-compression limit derived for the one-
component plasma if 
 is chosen to be 1

2 �the plasma fre-
quency of ions in a uniform negative compensating back-
ground �V−1/2�. Our calculated phonon moments, �0 and �1,
for diamond and BC8 obtained directly from the PDOS are
shown in Fig. 6 and are compared with �0 and �1 computed
by our double-Debye model. The near-equality between the
moments computed in the two different ways ensures the
accuracy of the double-Debye approach. Note that the �0 are

FIG. 3. �Color online� Phonon density of states of diamond for
two different volumes: �a� 5.57 and �b� 2.32 Å3 /atom, together
with the double-Debye model PDOS for those same volumes. Note
that in �a� the model virtually reduces to that of a single-Debye
model.
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roughly equal for the two solid phases throughout a range of
volumes; this results in a diamond-BC8 transition pressure,
which is only weakly dependent on temperature.27

The resulting harmonic free energy per atom is

Fh�V,T� =
log��B/�0�
log��B/�A�

fh
A�V,T� +

log��0/�A�
log��B/�A�

fh
B�V,T� ,

�15�

where the fh
A,B�V ,T� are the classic single-Debye free ener-

gies,

fh
A,B = kBT�9

8

�A,B

T
+ 3 log�1 − e−�A,B/T� − D��A,B

T
�� ,

�16�

with

D�y� =
3

y3�
0

y x3

exp�x� − 1
dx . �17�

From Eqs. �15� and �16�, we see that the harmonic free
energy is described in terms of the three characteristic tem-
peratures: �A, �B, and �0, together with their respective Grü-
neisen parameters. The volume dependence of the quasihar-
monic free energy of each phase is then fully described by
the nine parameters: 
A,B,0�, 	A,B,0�, and the integration
constants �A,B,0�

�0� .
The standard single-Debye model is only capable of re-

producing one moment �say, �0 or �1� and therefore cannot
address both high- and low-T limits simultaneously. Our
double-Debye model has the advantage that it reproduces
both the zero-point energy and the quasiclassical limit �T
��0�. This is particularly important for diamond and BC8
carbon since �1� the characteristic phonon frequencies are
high enough that zero-point motion is crucial even at ambi-
ent temperatures, and �2� at high pressures the low-T and
high-T moments are quite unequal. We note that for T well
above �0, the free energy �cold+ion thermal� reduces to that
of the Mie-Grüneisen equation of state, for which E�V ,T�
=F0�V�+3kBT and P�V ,T�= P0�V�+3kBT0�V� /V.

FIG. 4. �Color online� Phonon density of states of BC8 for two
different volumes: �a� 3.19 and �b� 1.72 Å3 /atom, together with the
double-Debye model PDOS for those same volumes.

FIG. 5. �Color online� Debye temperatures �A and �B for dia-
mond and BC8 phases at each volume �dots�, together with fits
assuming Grüneisen parameters which vary linearly with V �lines�.

FIG. 6. �Color online� Phonon moments �0 and �1 for diamond
and BC8 phases as computed directly from the PDOS �points�,
together with results from our double-Debye model �lines�, assum-
ing Grüneisen parameters which vary linearly with V.
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While the harmonic approximation is expected to be ex-
tremely reliable at low temperatures, it must begin to break
down as T increases and should break down near melting,
where the atomic vibration amplitudes become significant.
Anharmonic perturbation-theory calculations38 suggest that
corrections to the ion-thermal free energy coming from an-
harmonicity are of the form a1�V�T2+a2�V�T4+¯. To inves-
tigate these effects, we have performed molecular dynamics
�MD� within the GGA-DFT framework for both diamond
and BC8 phases. The internal energy and pressure were com-
puted by averaging over numerous uncorrelated snapshots
during the MD runs, which involved periodically repeated
cells of 64 �128� atoms for diamond �BC8�. We use ab initio
plane-wave Born-Oppenheimer MD with a 50 Ry energy cut-
off and �-point k-point sampling. The instantaneous pressure
of the system is defined as P=−�E /�V+�kBT, where the
partial derivative has an analytic expression within the first-
principles implementation and T is the instantaneous �ion-
kinetic� temperature.41 Simulation times ranged from 1 to 5
ps with a time step of 0.5 fs. The system was weakly coupled
to a velocity-scaling thermostat as implemented in the QBOX

code.42 Comparisons were then made to the energy and pres-
sure as calculated by the EOS model constructed from the
aforementioned cold and quasiharmonic ion-thermal terms
�as explained below, electronic excitations for the solid
phases were deemed to be of negligible importance�.

Figures 7 and 8 show the internal energy and pressure,
respectively, of the diamond phase along isochores as a func-
tion of temperature. We first note that the cold energy, F0�V�,
for the diamond phase had to be shifted up rigidly in energy
by 0.0952 eV/atom to facilitate this comparison because the
MD calculation was done at lower convergence than was
used in computing the cold energy. �Roughly half of the
discrepancy is due to number of k points and the other half is
due to the energy cutoff.� The solid E and P model curves
approach T=0 with zero slope; this is a result of zero-point

motion present in the Debye model, but not in our MD,
which treats the ions classically. So a fair comparison is only
meaningful at somewhat higher T, in particular, above �1.
Note that for the three volumes presented, E from the MD is
larger at a given T than E from the model. This is the effect
of anharmonicity. Subtracting the two results from each
other, we find a difference of internal energies which is pro-
portional to T2 and is roughly independent of volume. An
identical study was performed for BC8 with similar results,
though unfortunately, a different shift in energy �0.18 eV/
atom� was required to bring the MD and EOS model into
correspondence, indicating that the convergence issues for
BC8 and diamond are somewhat different. Thus, we have an
anharmonic correction to the ion-thermal term of the free
energy of the form

Fi�V,T� = Fh�V,T� − a�V�T2 �18�

for both solid phases, which is required if the internal energy
is to have the deviation exhibited here. Since we find the
corrections to be approximately volume-independent �a�V�
�a�, this implies no sizable anharmonic correction to the
pressure �P�−�F / ��V�T�; the close correspondence of MD
and quasiharmonic model results in Fig. 8 bears this out. We
find this to be approximately true for BC8 as well.

The final term considered for the solid-phase free energies
is the contribution of thermally excited electrons. In the case
of diamond, electronic excitations are not relevant because
diamond has a large electronic gap that remains open even at
finite temperatures and at the high pressures considered here,
as has been shown in previous work.27 The BC8 phase is a
semiconductor at low pressures and is predicted to be a low-
density-of-states metal at the range of compressions over
which it is predicted to be stable.19 Figure 9 shows our cal-
culated �GGA-LDA� electronic density of states for BC8 at
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FIG. 7. �Color online� Diamond energy vs temperature obtained
from averaging over constant-T constant-V molecular-dynamics tra-
jectories �dots� and from quasiharmonic solid model �cold
+quasiharmonic ion-thermal� �lines�. The anharmonic term �not
shown� is added later in order to bring the solid equation of state
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high compression. For temperatures well below the Fermi
temperature, TF, the contribution of electronic excitations to
the free energy can be computed by means of the Sommer-
feld expansion.38 This is an expansion of the free energy to
order �T /TF�2, which includes the T-dependent change in the
Fermi level while neglecting any T-dependent changes in the
one-electron energies themselves, a fine approximation for
T�TF. In this approximation the electronic excitation term
in the free energy is of the form − 1

6�2�kBT�2N�EF�, where
N�EF� is the density of states at the Fermi level. Since N�EF�
depends on density, we again have the general form
Fe�V ,T�=A�V�T2 �i.e., same form as the ion-anharmonic
term of Eq. �18��. Figure 10 shows A�V� versus V for BC8
computed from our volume-dependent electronic density of
states. Note the strong volume dependence resulting from the
pressure-induced insulator-to-metal transition; even though
the absolute values of A�V� are quite small relative to those
of good metals, we suspected that the strong V dependence

could result in a sizable contribution to the pressure. To wit,
we fit our calculated results with the smooth curve shown in
Fig. 10 and computed the resulting corrections to the thermal
pressure. They are essentially negligible; small enough so
that even the prediction of phase lines, which can be rather
sensitive to small changes in free energy, will be unaffected.
Thus, we conclude that electronic excitations are unimpor-
tant for the EOS of the solid phases of carbon in the range of
our interest �below a pressure of �2500 GPa�.

Summarizing, the solid-phase free energies are obtained
in three steps: First, the cold energies, F0�V�, are computed
and fit with smooth functions. Then the phonon densities of
states are computed, along with the resulting Debye tempera-
tures. A Debye-type model is constructed, again by fitting
smooth functions to ��V�. Finally, the anharmonic term is
added to bring the model results into correspondence with ab
initio MD simulations of the pressure and internal energy.
Electronic terms are ignored for diamond and BC8 phases
due to their negligible contribution to the free energy. The
parameters we use for our analytic free energy models for the
solid phases are reproduced in Table I.

B. Liquid phase

The liquid EOS is more difficult to describe than that of
the solid because there is no universally applicable model for
liquid EOS analogous to the cold+quasiharmonic ion-
thermal approach for solids. For the solid, the system can be
thought of as moving about in configuration space in a single
potential-energy well. The entropy in such a situation is then
simply understood, which is why the solid-phase ion-thermal
free energy can be accounted for in a Debye paradigm. Liq-
uids, on the other hand, can at best be thought of as moving
about on a complicated energy landscape possibly consisting
of multiple distinct wells but certainly not confined to one or
a few such wells. This makes a simple understanding of liq-
uid entropy difficult if not impossible. MD, and/or Monte
Carlo, simulations, which are directed at computing liquid
free energies, are very computationally intensive because the
system must be sampled over an enormous number of uncor-
related configurations in order to build up knowledge of the
entropy. There are techniques available which attempt to
minimize the computational cost of such calculations while
still achieving high accuracy, such as potential switching
integration.43 Wang et al.26 utilized this method to obtain the
melting line of diamond. In general, liquid simulations,
which are aimed at building up statistics required to obtain
the free energy �so-called “thermodynamic integration” tech-
niques�, always make use of comparisons to reference states,
for which the free energy is well known. These reference
states could be analogous liquid systems with simpler inter-
atomic force laws governing ionic motion �such as in poten-
tial switching�, or they could be states of the same system at
different thermodynamic conditions.

In this work, we make use of the diamond and BC8 melt-
ing curves computed previously27 to constrain the free en-
ergy of the liquid, thereby using the solid free energies we
determined above as references. These melting lines were
obtained by direct simulation of the solid-liquid equilibrium

FIG. 9. �Color online� Electronic density of states of BC8 crys-
tal for a volume of 1.72 Å3 /atom, corresponding to a pressure of
3685 GPa. The Fermi level is at 43.5 eV �vertical line�, where the
density of states is quite small.

FIG. 10. �Color online� Density of states at the Fermi energy,
D�EF�, as a function of volume for BC8 phase. For low pressure
this is effectively zero due to the presence of a finite electronic gap.
The solid line is a smooth fit to the results �see text�.
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by means of the, so-called two-phase method.44 Of note is
the fact that the predicted diamond and BC8 melting tem-
peratures both possess maxima as a function of pressure. The
maximum in the diamond melting curve has been investi-
gated previously in other theoretical work26,27 and was in-
ferred even before a direct calculation of the melting line was
ever performed.25 There has also been recent experimental
confirmation of maxima in both diamond and BC8, although
without the direct confirmation of the BC8 structure itself,
with a laser compression technique coupled with in situ op-
tical pyrometry.45 Our previous simulations27 on the melting
lines of diamond and BC8 use the same underlying approxi-
mations as in this work. In a sense, the complex problem of
obtaining the liquid entropy is then circumvented by making
use of the melting lines, the determination of which rests on
the fact that entropy differences �here, between solid and
liquid� are easier to obtain than absolute values of liquid
entropy.

In addition to the melting lines, we also directly compute
the EOS �energy and pressure as a function of volume and
temperature� in the liquid using ab initio MD. We perform
MD on liquid carbon throughout a range of densities and
temperatures corresponding to pressures of up to 3000 GPa
and temperatures of more than twice Tmelt. We use a simula-
tion scheme similar to the one described Sec. II A with 64
atoms but with a time step lowered to 0.25 fs. As with the
solid phases, we compute internal energy and pressure along
isochores. Results are displayed in Figs. 11 and 12, together
with the results of our liquid EOS model, discussed below.
Well below Tmelt, which is in the neighborhood of 8000 K for
both solid phases, the liquid in the MD simulations is super-
cooled as is evidenced by a notable reduction in atomic dif-
fusion. We disregard the E and P points with T�10 000 K
for this reason. Our first-principles MD results indicate that
�1� E�V ,T��F0�V�+3kBT and �2� P�V ,T�� P0�V�
+3kBT /V, with  roughly independent of volume and equal

to 0.84�0.05. We thus feel justified in applying a solidlike
free energy model to liquid carbon in this range of condi-
tions. It is interesting that, even though we took care to in-
clude the effects of electronic excitations in the metallic liq-
uid, the specific heat is essentially indistinguishable from 3kB
up to 20 000 K. Therefore, we do not include a T2 term from
either electronic excitations or “anharmonicity” in our liquid
free energy.

To determine optimal values for F0�V� and P0�V� for the
liquid, we extrapolate the MD data to T=0. This gives us F0
and P0 for seven values of V. We create a continuous “liquid
cold curve” by fitting the largest four V with a Vinet form as
in Eqs. �2� and �3� using the values V0=8.596 Å3 /atom,
B0=51.1 GPa, B0�=5.85, and �0=−153.651 eV. We then in-
troduce two corrections which bend the cold curve to fit the
MD results for the three smallest volumes. These corrections
are of the form

F0�V� → F0�V� +
K�V1/V − 1�n

L + �V1/V − 1�n �19�

for V�V1 and no correction for V�V1. We apply two such
corrections in succession. First, one at V1=3.9 Å3 /atom,
with K=−5.0 eV, L=5.0, and n=3 and then a second �after
the first had been applied� at V1=2.7 Å3 /atom, with K
=10.0 eV, L=3.0, and n=3. The resulting F0�V�, together
with the assumptions CV=3kB and =0.84, produces the
model results shown as the black lines in Figs. 11 and 12. It
should be noted that our resulting liquid cold curve possesses
an effective bulk modulus which is significantly smaller than
those of the two solid phases. This is encouraging since the
liquid must be considerably more compressible than the sol-
ids in order for the melt temperatures to exhibit maxima as a
function of presssure.25–27 This is in contrast to melting in
closed-packed elemental metals, in which the liquid is only
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FIG. 11. �Color online� Liquid energy vs temperature obtained
from averaging over constant-T constant-V molecular-dynamics tra-
jectories �dots� and from liquid model �lines�. Each curve corre-
sponds to an isochore. From the bottom to the top of the figure, the
volumes represented are 5.67, 4.93, 4.50, 4.00, 2.85, 2.31, and
1.98 Å3 /atom. The diamonds indicate liquidus temperature at the
appropriate density, computed using our resulting multiphase EOS
model.
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FIG. 12. �Color online� Liquid pressure vs temperature obtained
from averaging over constant-T constant-V molecular-dynamics tra-
jectories and from liquid model �lines�. Each curve corresponds to
an isochore. From the bottom to the top of the figure, the volumes
represented are 5.67, 4.93, 4.50, 4.00, 2.85, 2.31, and
1.98 Å3 /atom. The diamonds indicate liquidus temperature at the
appropriate density, computed using our resulting multiphase EOS
model.
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slightly more compressible than the solid and the resulting
melt temperature increases monotonically with pressure.

Though this gives us an accurate representation of the
liquid EOS �E and P as functions of V and T� throughout the
range of pressures and temperatures of interest to us, we
must still provide the elusive liquid entropy in order to fa-
cilitate free-energy matching between solid and liquid to
constrain the melt lines. This necessitates adopting a liquid
free-energy model, one which respects the above EOS, and
possesses just enough freedom for us to tune the solid-liquid
entropy difference in order to match the two-phase simula-
tion results.27 The liquid EOS model of Chisolm and
Wallace,31,32 developed for monatomic systems, is well
suited to this task. It is based on an analogy between lattice
vibrations of the crystalline solid and the atomic excitations
of atoms in the massively multiwell potential of the liquid
state. These authors hypothesize that the free energy �per
atom� of the liquid has the following form:46

F�V,T� = F0�V� + 3kBT log� �̄

T
� − kBT log�w� + Fe�V,T� .

�20�

The rationale for this model is based on the observation that
the specific heat of monatomic liquids is very close to 3kB
near melting and deviates from this value only as T is raised
to many times the melting temperature, an observation borne
out in our results above.47 The first term corresponds to our
hypothetical “cold curve,” while the second term contains
information about the curvature of the potential wells �“vi-
brational frequencies”� through an effective Debye tempera-
ture. The third term accounts for the contribution of the ex-
istence of multiple wells to the configurational entropy, while
the last term accounts for electronic excitations. Within this
model, the number of distinct potential wells increases expo-
nentially with the number of atoms in the system �wN�, so the
contribution to the configurational entropy per atom is there-
fore Sconf=kB log�w�. The compatible mathematical forms of
the second and third terms allow the constant w to be ab-

sorbed into a renormalized effective Debye temperature �̃

= �̄ /w1/3.

To give an idea of the physical meaning of �̃, it can be
shown that the latent heat of melting is approximately

3kBTmelt log��sol / �̃liq� if anharmonicity and electronic contri-

butions are small. This means that we can tune �̃liq to fit the
solid-liquid entropy difference needed to accommodate our
computed melting temperatures and internal energy differ-

ences. Though �̄liq is meant to describe the curvature of a
representative many-body potential well, we take this identi-
fication to be merely notional and use it instead as a “knob”
for the entropy of the liquid.

With the specific heat, Grüneisen parameter, and cold

curve fixed, we are left with one unknown: �̃0, the renormal-
ized effective Debye temperature at a fixed volume �the vol-
ume dependence having been fixed by our choice of �V�
�0.84�. We find that the value �̃0�Vref=6.695 Å3 /atom�
=520 K allows us to best match the two-phase simulation

melt curves. Figure 13 shows the phase diagram of our
model, together with the two-phase results. Note that the
low-P portion of the melt curve is extremely well repro-
duced, while the higher pressures less so. In particular, our
triple point is somewhat different from that suggested by the
two-phase simulations, resulting from the diamond and BC8
melt curves of our model possessing less curvature at higher
pressures. Also, our BC8 melt temperature is slightly too
high at P=2000 GPa. We stress that the determination of
phase lines is extremely sensitive to very small changes in
the EOS of the individual phases. At higher pressures, this is
even more the case, as the surfaces of competing phases
become more similar. We submit that this is the best we can
do in fitting the melt lines, subject to the requirement of
obtaining an accurate match to the liquid MD EOS as shown
in Figs. 11 and 12.

III. MULTIPHASE EQUATION OF STATE MODEL:
DISCUSSION

The parameters that describe the free energy of the solid
phases are summarized in Table I, together with the discus-
sion of Sec. II, which describes the liquid free energy. Model
phase lines are computed using the two-phase tangent Max-
well construction, in which the transition pressure, between
phases 1 and 2, P12, and transition volumes, V1 and V2, are
computed from the equation

F1�V1,T� − F2�V2,T� = − P12�V2 − V1� . �21�

To describe the mixed phase region between V1 and V2, ad-
ditional hypotheses need to be made; we take the free energy
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FIG. 13. �Color online� Phase diagram for carbon as obtained
from the free energies described in this work �solid black� com-
pared with melting curve �red error bars� of the two-phase simula-
tions �extracted from Ref. 27�. The diamond-BC8 phase line can be
compared to the one resulting from neglecting anharmonic terms in
both phases �dotted blue�; this curve is shown to illustrate the effect
of anharmonicity in the solid-solid-phase line. The slightly larger
anharmonic term in the BC8 phase results in the entropy of that
phase being slightly greater than the entropy of diamond, causing
BC8 to be slightly favored as T is increased. This moves the triple-
point to lower P and lower T when compared with that resulting
from harmonic-only free energies.
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to be a volume-weighted average of single-phase free ener-
gies,

F�V,T� = �1 − ��F1�V,T� + �F2�V,T� , �22�

where �= �V−V1� / �V2−V1�. This corresponds to the ideal
picture of a homogeneous mixture of phases 1 and 2 with no
sizable interfacial free energy for regions separating the
phases. While this approximation may not be strictly justi-
fied, it provides a simple and practical means for generating
a multiphase EOS table for use in hydrodynamic simulations
where coexistence situations are reached. The phase diagram
resulting from the application of Eq. �21� is shown in Fig.
13. We have already discussed the melting lines above; we
now note that the diamond-BC8 phase line is slightly af-
fected by the anharmonic terms we took care to include in
the solid phases �see Fig. 13�.

Experiments on carbon in extreme conditions fall into
several categories. First, there are ambient pressure proper-
ties as a function of temperature, such as thermal expansion
and the low-pressure melting temperature. We find a thermal-
expansion parameter �at P=0 and T=300 K� of 1.7
�10−6 K−1,48 in qualitative agreement with the experimental
value of 1.0�10−6 K−1.49 This small value is a result of the
large bulk modulus and the small Grüneisen parameter in the
diamond phase. The low-P diamond melting temperature of
our multiphase model shown in Fig. 13 is in excellent agree-
ment with the first-principles GGA-DFT predicted value of
4000 or 4500 K of Refs. 27 and 26 and the experimental
extrapolated value of 3820 K. We note that this has been
facilitated by our choice of liquid Debye temperature.

Second, there are shock measurements on the diamond
phase. These are of the form: final density versus shock pres-
sure, given ambient initial conditions, after the usual transla-
tion is made from the us and up variables �shock speed and
particle speed�. The bulk of these data is from the work of
Pavlovskii.50 If we assume that these measurements corre-
spond to states along the principal Hugoniot of diamond, we
obtain excellent agreement with their measured points in
�� , P� space, provided that we shift our diamond V0 slightly

so as to coincide with the experimental value.
Third, there are recent measurements on the Hugoniot in

the liquid phase,45 in which the inferred quantities include
pressure and temperature �optical pyrometry being possible
from the liquid since it is metallic�. These experimental data
consist of two distinct parts. There is a plateau region where
the shock temperature is roughly constant with pressure be-
tween 550 and 1100 GPa �see Fig. 14�. It corresponds well to
our diamond melting line in this pressure range and the hints
of a maximum in the diamond melting curve, though the
experimental value of T in the plateau region is �1500 K
higher than our melting temperatures.51 Thus, we assume
that these points correspond to states in the diamond-liquid
mixed phase region. The second part includes the data where
the shock temperature grows rapidly with pressure for P
�1100 GPa. This is the Hugoniot in the liquid �again, with
an ambient diamond initial condition�. At a given pressure,
we calculate the liquid Hugoniot to have a temperature sig-
nificantly higher than the that of the experiment. Our liquid
Hugoniot,52 displayed along with the measurement45 in Fig.
14, is in rough agreement with that of similar work by
Romero et al.53 Although our liquid EOS model is somewhat
approximate, we find it difficult to explain this large dis-
agreement with the experimental results. The offset in
�P , T� space between the solid and liquid branches of the
principal Hugoniot reflects the difference in entropy, and
therefore latent heat, between solid and liquid. Our results
suggest �Smelt�2.9kB per atom along an isochore in the vi-
cinity of shock melting, while our modeling of the experi-
mental results suggests a value of roughly 4.5kB per atom. In
a theoretical work, Wang et al.26 reported �Smelt�2.5kB.
Further theoretical and experimental work must be done to
resolve this discrepancy.

IV. EQUATION OF STATE EXTENSION TO THE PLASMA
LIMIT

To apply the multiphase EOS model to simulations of
very high-energy-density laser-fusion experiments on the

0

5000

10000

15000

20000

0 500 1000 1500 2000 2500

T
(K

)

P (GPa)

Experiment single shock
single shock

2nd shock at 200 GPa
2nd shock at 300 GPa
2nd shock at 400 GPa

FIG. 14. �Color online� Hugoniot curves of
carbon in �P ,T�-space as calculated from our
EOS model, initial condition in the diamond
state, and extensions to BC8 and liquid phase.
The full line �red� is the diamond primary Hugo-
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National Ignition Facility �NIF� at Livermore, we need to
extend the EOS to much wider ranges of density and tem-
perature. High-intensity laser light on a diamond surface will
produce strong compressive shocks as well as ablation of hot
vapor.

Simulation of NIF experiments with hydrodynamic codes
requires the pressure and energy functions in tabular format,
in which the independent variables are mass density ��� and
temperature �T�. We generate the final carbon EOS table by
embedding a table produced from the multi-phase model �ex-
plained in the previous sections� into a much larger-range
table produced by the QEOS model.54 In order to represent
accurately the latent heat of melting in diamond, a very
finely gridded table is needed. The multiphase model is used
to generate a rectangular �� ,T� table over the range 2.49
���19.94 g /cm3 and 1�T�46,420 K. The table grid
contains 400 densities and 300 temperatures with a logarith-
mic spacing. This grid allows for good definition of the melt-
ing transition and its latent heat.

In the QEOS code, the thermodynamic functions are parti-
tioned as in Eq. �1�. The cold curve is the Thomas-Fermi
cold isotherm plus a two-parameter function that guarantees
the correct experimental values of reference density and bulk
modulus. The ionic term represents the solid and fluid
phases, separated by a Lindemann model melting curve. The
solid model is a Debye model. The fluid model has an ion
heat capacity of 3kB at the melting boundary and drops to
3 /2kB at high temperatures according to the scaling law
�Tmelt��� /T�1/3, where Tmelt��� is the Lindemann melting tem-
perature prediction. The QEOS melting curve is only a
model boundary and has no latent heat of melting. The Lin-
demann melting line used in QEOS is only a means to con-
struct the liquid specific heat, and it does not affect in any
way our explicit melting lines described earlier in the multi-
phase model region. The electronic term is given by the
Thomas-Fermi model. These models are designed to give
accurate physics behavior at the low and high limits of tem-
perature and density. For intermediate �� ,T� conditions, the
cold curve and ionic models are parametrized to allow fits to
a wide variety of materials.54,55 We use adjustable
parameters54 in the cold-curve pressure and in the Grüneisen

function ��� to make a best fit to the multiphase pressure
isotherms at high and low temperatures so that the tables will
merge smoothly along the boundaries. QEOS and multiphase
pressure isochores are compared in Fig. 15. The fit is not
perfect but is adequate for generating the large EOS table.
The QEOS code was then run to produce a table over the
range 10−6���103 g /cm3 and 1�T�109 K, which also
includes the same �� ,T� grid used in the multiphase model.

The two tables are then merged by replacing the QEOS
data in the multiphase model �� ,T� range with the multi-
phase data. The discontinuities along the boundaries of the
multiphase and QEOS regions are small and can be
smoothed out by table interpolation. The resulting table con-
tains nearly 200000 points. The total �� ,T� region is com-
pared with the multiphase model region in Fig. 16. Prelimi-
nary hydrodynamic simulations have been carried out with
the resulting EOS table and are currently being used in the
design of carbon-based fusion capsules for the NIF.56

V. CONCLUSIONS

We have constructed a multiphase equation of state for
carbon at high pressures entirely from first-principles calcu-
lations. The solid-phase free energies include the effects of
quantum ions at low temperatures through a Debye-type
treatment and anharmonic effects at high temperatures. The
melting lines, also calculated by first-principles electronic
structure methods, served effectively as a reference for the
construction of the liquid equation of state. A simple form for
the free energy of the liquid, based on a picture for mon-
atomic systems, was assumed and was shown to reproduce
the general features of our ab initio molecular-dynamics cal-
culations of liquid EOS, while reproducing the maxima in
the melting lines for both diamond and BC8. We also em-
ployed a prescription for connecting the detailed multiphase
EOS model to a Thomas-Fermi model aimed at addressing
extreme densities and temperatures. The chain of calcula-
tions from first-principles molecular dynamics, to multiphase
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free energy models, to EOS tables, and to hydrodynamic
simulations represents a step forward in applied physics.
This prescription is expected to be useful for many other
materials of interest that may be subjected to high-energy-
density conditions.

We note that there are still a few troubling issues regard-
ing the comparison to experiments on carbon. Most notably,
our predictions of the principal Hugoniot in the liquid phase
are discrepant from recent laser-driven shock
measurements.45 Additional experimental and theoretical
work will most likely be needed in order to address this issue

and to shed further light on the amount of latent heat in-
volved in the diamond-to-liquid transition.
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